Review: Competitive Learning Algorithm of Neural Network

Jitendra Singh Sengar, 1Niresh Sharma
1M.Tech (CSE) RKDF IST Bhopal
2HOD Department of CSE
RKDF IST Bhopal

Abstract
This paper deals mainly with the development of new learning algorithms and the study of the dynamics of neural networks. This survey paper will cover issues about the unsupervised competitive learning as well as some of its variances like hard competitive learning and soft competitive learning. After introducing unsupervised learning algorithms, we will discuss the other competitive learning methods and motivations and goodness as well as the weakness of this model. Paper focuses on the evolution of learning algorithm of neural network using competitive learning. Furthermore, we compare the performance of it with other competitive learning that have appeared in the past. In the last of this paper, we conclude the survey of competitive methods.

Keywords: Neural Network, Unsupervised Learning Algorithms, Competitive Methods of learning.

I. INTRODUCTION
Learning is a process by which the free parameters of a neural network [3] are adapted through a continuing process of stimulation by the environment in which the network is embedded. The type of learning is determined by the manner in which the parameter changes take place.

In unsupervised learning [7] there is no external teacher to oversee the learning process. In other words, there are no specific samples of the function to be learned by the network. Rather, provision is made for a task-independent measure of the quality of representation that the network is required to learn. Here, the weights of the network are to be optimized with respect to this criterion. Our interest here is in training networks of simple units to perform the above tasks. In the remainder of this work, some basic unsupervised learning rules for a single unit and for simple networks are introduced.

II. COMPETITIVE LEARNING
In this learning those neurons which respond strongly to input stimuli have their weights updated. When an input pattern is presented all neurons in the layer compete and the winning neurons undergo weights adjustment. The main goal of the competitive learning [6],[8] is to transform an input signal pattern of arbitrary dimension into a lower (1, 2 or 3 dimensions) dimensional and to perform this transformation adaptively in a topological orderly fashion.

The algorithm starts by randomly initializing the synaptic weights in the network. That is, no prior order is imposed on the network in the initialization operation. After that, there are 3 major activities involved in this method. They are the followings:
1. Competition
2. Adjustment

2.1. Competition
For each input pattern, the neurons in the network will compute their respective values of a discriminate function based on the input. This function provides the basis for competition among the neurons. The neuron with the smallest value of the discriminate function (usually in Euclidean space: Euclidean distance) is declared as the winning neuron. To understand which is the distance measurement used in that discriminate function, we will briefly describe it below.

Assume that \(m \) is the dimension of the input pattern (or input space) and \(\mathbf{v} \) denotes an input pattern vector, i.e. \(\mathbf{v} = [v_1, v_2, ..., v_m]^T \). The synaptic weight vector has the same dimension as the input space. Let the synaptic weight vector of neuron \(i \) denotes by \(\mathbf{w}_i = [w_{i1}, w_{i2}, ..., w_{im}]^T \). To find the best match of the input vector \(\mathbf{v} \) with the synaptic weight vector \(\mathbf{w}_i \), compare the distance of the input vector with all the synaptic weights.
weight vectors for \(i = 1, \ldots, N \), where \(N \) is the total number of neurons, and select the smallest. The selection of the best matching or winning neuron \(k \) as,
\[
k = \arg \min_i \| v - w_i \| \quad \text{where} \quad i = 1, \ldots, N
\]

2.2. Adjustment

The winning neuron \(k \) determines the spatial location of a topological neighborhood of excited neurons, i.e. determines all the neurons that in the “neighborhood area” of the winning neuron. According to neurobiological evidence (lateral inhibition or some times called on-center-off-surround), a neuron that is firing tends to excite the neurons in its neighborhood more than those far away from it. This observation leads the competitive learning algorithm to define the topological neighborhood around the winning neuron \(k \) as explained below.

Let \(d_k \) be the lateral distance between the winning neuron \(k \) and the excited neuron \(i \). We can define the topological neighborhood \(h_{ik} \) as a uni-modal function with the following two requirements:
1) It is symmetric about the maximum point defined by \(d_k = 0 \).
2) Its amplitude decreases monotonically to zero with increasing lateral distance \(d_k \). A typical choice of \(h_{ik} \) that satisfies this requirement is the Gaussian function:
\[
h_{ik} = \frac{d_k^2}{2\delta^2},
\]
where \(\delta \) is the width of the topological neighborhood. The \(\delta \) reduction scheme ensures that the map actually approaches a neighborhood preserving the final structure, assumed that such a structure exists. If the topology of the output space does not match that of the data manifold, neighborhood violations is inevitable.

An example of such a reduction scheme is provide below:
\[
\delta(n) = \delta_0 \exp\left(-\frac{n}{\tau_i}\right), \quad n = 0,1,2,3
\]

where \(\delta \) indicates the number of sequence, \(\delta_0 \) is the beginning value of \(\delta \), and \(\tau_i \) is the time parameter used to reduce the value of the width of the topological neighborhood. Or another simple method used to decrease the \(\delta \) is just multiple it by a value that is less than 1, say, 0.9. These two methods are similar to the simulated annealing scheme with the following note:

The spread of the neighborhood function should initially include all neurons for any winning neuron and during the ordering phase should be slowly reduced to eventually include only a few neurons in the winner’s neighborhood. During the convergence phase, the neighborhood function should include only the winning neuron.

For the network to be self-organizing, the synaptic weight vector \(w_i \) of neuron \(i \) is required to change in relation to the input vector \(v \). This is a kind of un-supervised learning, so we can use a modified version of Hebbian learning [1] by including a forgetting term \(g(y_i) \) that is used to keep the weight from growing large, where \(g(y_i) \) is some positive scalar function of the response of the network \(y_i \). So, we can define the change to the weight vector as:
\[
\Delta w_i = \eta y_i v - g(y_i) w_i,
\]
where \(\eta \) is the learning rate. Furthermore, we can define \(g(y_i) \) as a linear function of \(y_i \), say, \(g(y_i) = \eta y_i \), and setting \(y_i = h_{ik} \). So we can simplify above equation to the following:
\[
\Delta w_i = \eta h_{ik}(v - w_i).
\]

Using discrete time formalism, we can derive the final formula for the weight update procedure:
\[
w_i(n+1) = w_i(n) + \eta(n) h_{ik}(n) [v(n) - w_i(n)],
\]

Where \(n \) denotes the times step updating the weight. This above equation will be applied to all the neurons that lie inside the neighborhood of the winning neuron (other neurons are also updated but the weight change is zero caused by the value of the neighborhood function). Upon repeated presenting training data, the synaptic weight tends to follow the distribution of the input data due to neighborhood updating, which causes the adaptation of the weight vectors to the input. The neighborhood updating also makes the weights between neighbor neurons have the similar values to each other.

\textbf{a. Simple Competitive Learning}

Because we are now dealing with competition, it only makes sense to consider a group of interacting units. We assume the simplest architecture where we have a single layer of units, each receiving the same input \(x \)
Producing an output y_i. We also assume that only one unit is active at a given time. This active unit is called the "winner" and is determined as the unit with the largest weighted-sum net,i,k.

$$\text{net}_i^k = \mathbf{w}_i^T \mathbf{x}_k$$ \hspace{1cm} (1)

and x_k is the current input. Thus, unit i is the winning unit if

$$\mathbf{w}_i^T \mathbf{x}_k \geq \mathbf{w}_j^T \mathbf{x}_k; \hspace{0.5cm} \text{for all } j \neq i$$ \hspace{1cm} (2)

which may be written as

$$\|\mathbf{w}_i - \mathbf{x}_k\| \leq \|\mathbf{w}_j - \mathbf{x}_k\| \hspace{0.5cm} \text{for all } j \neq i$$ \hspace{1cm} (3)

if $|w_i|=1$ for all $i = 1, 2, ..., m$. Thus, the winner is the node with the weight vector closest (in a Euclidean distance sense) to the input vector. It is interesting to note that lateral inhibition may be employed here in order to implement the "winner-take-all" operation in Equation (2) or (3). This is similar to what we have described in the previous section with a slight variation: Each unit inhibits all other units and self-excites itself, as shown in Figure 1.

In order to assure winner-take-all operation, a proper choice of lateral weights and unit activation functions must be made (e.g., see Grossberg, 1976, and Lippmann, 1987). One possible choice for the lateral weights is

$$\mathcal{U}_i = \left\{ \begin{array}{ll}
1 & i = j \\
-\varepsilon & i \neq j
\end{array} \right. \quad \text{............ (4)}$$

where $0 < \varepsilon < \frac{1}{m}$ and m is the number of units in the network. An appropriate activation function for this type of network is shown in figure, where T is chosen such that the outputs y_i do not saturate at 1 before convergence of the winner-take-all competition; after convergence, only the winning unit will saturate at 1 with all other units having zero outputs. Note, however, that if one is training the net as part of a computer simulation, there is no need for the winner-take-all net to be implemented explicitly; it is more efficient from a computation point of view to perform the winner selection by direct search for the maximum net. Thus far, we have only described the competition mechanism of the competitive learning technique[2].

Next, we give a learning equation for weight updating. For a given input x_k drawn from a random distribution $p(x)$, the weights of the winning unit are updated (the weights of all other units are left unchanged) according to (Grossberg, 1969; von der Malsburg, 1973; Rumelhart and Zipser, 1985):

$$\Delta \mathbf{w}_i = \rho \left(\frac{x_k - \mathbf{w}_i}{\|x_k\|} \right) \quad \text{if } \mathbf{w}_i \text{ is the weight vector of the winning unit}$$

$$\Delta \mathbf{w}_i = 0 \quad \text{otherwise}$$ \hspace{1cm} (5)

If the magnitudes of the input vectors contain no useful information, a more appropriate rule to use is

$$\Delta \mathbf{w}_i = \rho \left(\frac{x_k - \mathbf{w}_i}{\|x_k\|} \right)$$ \hspace{1cm} (6)

The above rules tend to tilt the weight vector of the current winning unit in the direction of the current input. The cumulative effect of the repetitive application of the above rules can be described as follows. Let us view the input and weight vectors as points scattered on the surface of a hypersphere. The effect of the application of the competitive learning
rule is to sensitize certain units towards neighboring clusters of input data. Ultimately, some units (frequent winner units) will evolve so that their weight vector points towards the "center of mass" of the nearest significant dense cluster of data points.

b. Learning Vector Quantization

One of the common applications of competitive learning is adaptive vector quantization [4] for data compression (e.g., speech and image data). Here, we need to categorize a given set of \(\mathbf{x}_i \) data points (vectors) into \(m \) "templates" so that later one may use an encoded version of the corresponding template of any input vector to represent the vector, as opposed to using the vector itself. This leads to efficient quantization (compression) for storage and for transmission purposes (albeit at the expense of some distortion). Vector quantization is a technique whereby the input space is divided into a number of distinct regions, and for each region a "template" (reconstruction vector) is defined. When presented with a new input vector \(\mathbf{x} \), a vector quantizer first determines the region in which the vector lies. Then, the quantizer outputs an encoded version of the reconstruction vector \(\mathbf{w}_i \) representing that particular region containing \(\mathbf{x} \). The set of all possible reconstruction vectors \(\mathbf{w}_i \) is usually called the "codebook" of the quantizer.

When the Euclidean distance similarity measure is used to decide on the region to which the input \(\mathbf{x} \) belongs, the quantizer is called Voronoi quantizer. The Voronoi quantizer partitions its input space into Voronoi cells, each cell is represented by one of the reconstruction vectors, \(\mathbf{w}_i \). The \(i \)th Voronoi cell contains those points of the input space that are closest (in a Euclidean sense) to the vector \(\mathbf{w}_i \) than to any other vector \(\mathbf{w}_j, j \neq i \). The competitive learning rule with a winning unit determination based on the Euclidean distance may now be used in order to allocate a set of \(m \) reconstruction vectors \(\mathbf{w}_i \in \mathbb{R}^n, i = 1, 2, ..., m \), to the input space of \(n \)-dimensional vectors \(\mathbf{x} \). Let \(\mathbf{x} \) be distributed according to the probability density function \(p(\mathbf{x}) \). Initially, we set the starting values of the vectors \(\mathbf{w}_i \) to the first \(m \) randomly generated samples of \(\mathbf{x} \). Additional samples \(\mathbf{x} \) are then used for training. Here, the learning rate is selected as a monotonically decreasing function of the number of iterations \(k \). Based on empirical results, Kohonen (1989) conjectured that, in an average sense, the asymptotic local point density of the \(\mathbf{w}_i \) (i.e., the number of \(\mathbf{w}_i \) falling in a small volume of \(\mathbb{R}_n \) centered at \(\mathbf{x} \)) obtained by the above competitive learning process takes the form of a continuous, monotonically increasing function of \(p(\mathbf{x}) \). Thus, this competitive learning algorithm may be viewed as an "approximate" method for computing the reconstruction vectors \(\mathbf{w}_i \) in an unsupervised manner. Kohonen (1989) designed supervised versions of vector quantization (called learning vector quantization, LVQ) for adaptive pattern classification. Here, class information is used to fine tune the reconstruction vectors in a Voronoi quantizer, so as to improve the quality of the classifier decision regions. In pattern classification problems, it is the decision surface between pattern classes and not the inside of the class distribution, which should be described most accurately.

\[
\Delta \mathbf{w}_i = \begin{cases} +\rho^k(\mathbf{x}^k - \mathbf{w}_i) & \text{if } c_j = c_l \\ -\rho^k(\mathbf{x}^k - \mathbf{w}_i) & \text{if } c_j \neq c_l \end{cases} \quad (7)
\]

where \(k \) is assumed to be a monotonically decreasing function of the number of iterations \(k \). After convergence, the input space \(\mathbb{R}_n \) is again partitioned by a Voronoi tessellation corresponding to the tuned \(\mathbf{w}_i \) vectors. The primary effect of the reward/punish rule in Equation (7) is to minimize the number of
misclassifications. At the same time, however, the vectors \mathbf{w}_i are pulled away from the zones of class overlap where misclassifications persist.

The convergence speed of LVQ can be improved if each vector \mathbf{w}_i has its own adaptive learning rate ρ_i^k given by

$$
\rho_i^k = \begin{cases}
\frac{\rho_i^{k-1}}{1 + \rho_i^{k-1}} & \text{if } c_j = c_i \\
1 - \rho_i^{k-1} & \text{if } c_j \neq c_i
\end{cases}
$$

(8)

This recursive rule causes i to decrease if \mathbf{w}_i classifies \mathbf{x}_k correctly. Otherwise, i increases. Equations (7) and (8) define what is known as an "optimized learning rate" LVQ (OLVQ). Another improved algorithm named LVQ2 has also been suggested by Kohonen et al. (1988) which approaches the performance predicted by Bayes decision theory (Duda and Hart, 1973). Some theoretical aspects of competitive learning are considered in the next chapter. More general competitive networks with stable categorization behavior have been proposed by Carpenter and Grossberg.

III. CURRENT TREND AND OUTLOOK FOR THE FUTURE

In machine learning, unsupervised learning refers to the problem of trying to find hidden structure in unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning and reinforcement learning. Unsupervised learning is closely related to the problem of density estimation in statistics. However unsupervised learning also encompasses many other techniques that seek to summarize and explain key features of the data.

Approaches to unsupervised learning include:

- clustering (e.g., k-means, mixture models, k-nearest neighbors, hierarchical clustering),
- blind signal separation using feature extraction techniques for dimensionality reduction (e.g., Principal component analysis, Independent component analysis, Non-negative matrix factorization, Singular value decomposition).

Among neural network models, the self-organizing map (SOM) and adaptive resonance theory (ART) are commonly used unsupervised learning algorithms [5].

The SOM is a topographic organization in which nearby locations in the map represent inputs with similar properties. SOM algorithm becomes more and more interesting in many fields such as: pattern recognition, clustering, and function approximation, data- and web-mining. This survey will cover issues about the SOFM its self as well as some of its variances like Neural Gas, Growing Neural Gas, Growing Cell Structures, etc and they are all the kind of unsupervised competitive learning algorithms.

The ART model allows the number of clusters to vary with problem size and lets the user control the degree of similarity between members of the same clusters by means of a user-defined constant called the vigilance parameter. ART networks are also used for many pattern recognition tasks, such as automatic target recognition and seismic signal processing.

In future, we will propose an approach of neural network for unsupervised learning based on competitive learning set of any input pattern in. In this approach single layer self-organizing map learning will be used with the recurrent features that represent problem solution space as NN state space, find weights and define node function and produce only one set of output values rather than a sequence of values from a given input. These networks are memory-less in the sense that their response to an input is independent. Recurrent, or feedback, networks are dynamic systems. When a new input pattern is presented, the neuron outputs are computed. Because of the feedback paths, the inputs to each neuron are then modified, which leads the network to enter a new state. Different network architectures require appropriate learning algorithms.
IV. CONCLUSION AND FUTURE WORK

Finally, simple, single layer networks of multiple interconnected units are considered in the context of competitive learning, learning vector quantization, principal component analysis, and self-organizing feature maps. Simulations are also included which are designed to illustrate the powerful emerging computational properties of these simple networks and their application. It is demonstrated that local interactions in a competitive net can lead to global order. A case in point is the SOFM where simple incremental interactions among locally neighboring units lead to a global map which preserves the topology and density of the input data.

This paper considers the use of learning vector quantization to model aspects of development including the property of recurrent rules of learning for strengthening of synaptic efficacy of structure in the visual system in early life.

Reference

